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Abstract Homo/miktoarm star polymers were successfully synthesized via

combination of the ‘‘arm-first’’ and ‘‘coupling-onto’’ strategies. Firstly, the multi-

functional coupling agent (core), 2, 4, 6-tris(3-ethynylphenyl)-1,3,5-triazine-

2,4,6-triamine (TPTTA), was synthesized. Secondly, the linear polystyrene-Cl

(PS-Cl) and poly(2-(dimethylamino)ethyl methacrylate)-Br (PDMAEMA-Br) were

prepared by atom transfer radical polymerization (ATRP) method. Then, the linear

PS-Cl and PDMAEMA-Br chains were modified by a nucleophilic substitution

reaction with sodium azide. Finally, homo/miktoarm star polymers PS3 and

PS(PDMAEMA)2 were designed by click reaction between the core (TPTTA) and

the arm precursor (PS-N3 or PDMAEMA-N3). The structures of the PS3,

PS(PDMAEMA)2 and the precursors were all characterized by NMR, FT-IR, UV

and GPC analysis. Moreover, the self-assembly behaviors of the miktoarm

amphiphilic copolymer PS(PDMAEMA)2 was also investigated by transmission

electron microscopy (TEM).

Keywords Click chemistry � Atom transfer radical polymerization (ATRP) �
Miktoarm amphiphilic copolymers � Self-assembly

Introduction

Star polymers have received increasing attention due to their interesting properties,

compact structure and globular shape in comparison with their corresponding linear

analogues. Previously, the well-defined star polymers were prepared only by living

anionic polymerization method [1], however, which demanded relatively rigorous
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experimental conditions. In recent years, the development of controlled/living

radical polymerization (CRP), such as, atom transfer free radical polymerization

(ATRP) [2–4], nitroxide mediated radical polymerization (NMP) [5, 6], reversible

addition fragmentation chain transfer (RAFT) polymerization [7–9], made the

synthesis of well-controlled star polymers relatively convenient and easy. Typically,

three strategies, ‘‘core-first’’ [10–14], ‘‘coupling-onto’’ [15, 16] and ‘‘arm-first’’

[17–19], were widely used to prepare star polymers. Among them, the ‘‘coupling-

onto’’ method required that the functionality of the coupling agent and the coupling

efficiency were both extremely high.

ATRP is one of the most effective CRP techniques to produce chain-end-

functionalized polymers with predestined structures. In ATRP systems, the obtained

polymers usually captured a halogen atom in each x-ends of the polymers, which

can be successfully converted into other functionalized groups, such as hydroxyl,

amino and azide groups [2, 20]. Recently, the cycloaddition reactions between an

azide and an alkyne, namely ‘‘click chemistry’’, as termed by Sharpless et al., have

also attracted much attention due to their high specificity and efficiency [21, 22].

Several research teams have reported the synthesis of a wide range of functional

polymers by a combination of ATRP and ‘‘click chemistry’’. In those processes, the

obtained polymer captured with a halogen atom by ATRP can be easily transformed

into azides via a nucleophilic substitution reaction. Then, the azide end-functionized

polymer can be readily ‘‘clicked’’ with functional alkynes [23–31]. Tunca and his

coworkers [32] reported a one-pot synthesis of ABC triblock copolymers of

poly(ethylene glycol)-b-polystyrene-b-poly(methyl methacrylate) (PEG-b-PS-b-

PMMA), and poly(e-caprolactone)-b-polystyrene-b-poly(methyl methacrylate)

(PCL-b-PS-b-PMMA) by combining in situ click [3 ? 2] and Diels-Alder [33]

[4 ? 2] reactions. Matyjaszewski’s group synthesized the three-arm block copoly-

mer poly(ethylene oxide)-b-polystyrene (PEO-b-PS)3 by combination of ‘‘core-

first’’ and ‘‘coupling-onto’’ strategies [34]. Our group also prepared the well-defined

hetero-arm star polymers, containing three polystyrene chains and one poly(methyl

methcryate) (PMMA) chain via the combination of RAFT polymerization, ATRP

and ‘‘click chemistry’’ methods [35]. However, according to the experimental

results reported by Tunca et al. [36], the click reaction efficiency for A3-type star

polymer, PS3, has been found to be only 87%. Although the reaction mixture

contained mainly A3 star polymer, there was also a small amount of A2 block

copolymer and A1 homopolymer. The homogeneous A3-type star polymer (PS3)

was not easily obtained due to the difficult detachment of the oil PS linear polymer.

The similar results were also observed by Matyjaszewski’s group [27, 34].

Therefore, the homogeneous star polymers were not easy to be obtained by ‘‘click’’

coupling reactions.

Miktoarm star polymer is a kind of copolymer in which the arms with different

chemical structures were connected at one junction point. Among them, amphiphilic

miktoarm star copolymers showed quite different aggregated morphologies in bulk

[37–39] and the self-assembly behaviors in solution [40, 41]. Recently, Liu et al.

[42] reported the synthesis of well-defined Y-shaped miktoarm amphiphilic

copolymers, poly (e-caprolactone)-b-(poly(2-(dimethylamino)ethylmethacrylate))2

((PCL)(PDMA)2) and (PCL)2(PDMA) via a combination of ring-opening
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polymerization (ROP) and ATRP techniques by the ‘‘core-first’’ method. However,

up to now, few publications have been reported about the synthesis of the

amphiphilic miktoarm star copolymer by ‘‘arm-first’’ method. Recently, Harruna

et al. reported the synthesis of amphiphilic miktoarm tris(2,20-bipyridine)ruthe-

nium-cored star-shaped polymers consisting of one polystyrene block and two

poly(N-isopropylacrylamide) blocks using RAFT polymerization. In light of these

considerations, herein, we made effort to synthesize a homo/miktoarm A3/A2B star

polymer via combination ATRP and click reaction. The relatively low efficiency of the

click coupling reaction for A3-type polystyrene was also observed at various

temperatures. Furthermore, amphiphilic miktoarm star copolymer PS(PDMAEMA)2

was also successfully prepared using a click reaction between the core (TPTTA) and the

arm precursor (PS-N3 and PDMAEMA-N3) by ‘‘arm-first’’ method. Most interestingly,

the efficiency of the click coupling reaction for AB2-type PS(PDMAEMA)2 was

enhanced by addition of excess hydrophilic precursors (PDMAEMA-N3). Meanwhile,

the spherical micelles could be easily prepared via the self-assembly of amphiphilic

miktoarm star copolymers PS(PDMAEMA)2.

Experimental section

Materials

Sodium azide (Alfa Aesar, 98%), 3-aminophenylacetylene (Alfa Aesar, 98%),

cyanuric chloride (Acros, USA, 97%), 1-phenylethylchloride (Aldrich, 98%),

9-chloromethylanthracene (Aldrich, 98%), and ethyl-2-bromoisobutyrate (EBIB)

(Alfa Aesar, 98%) were used as received. Styrene (St) (chemically pure, Shanghai

Chemical Reagent Co. Ltd) was purified by extraction with 5% sodium hydroxide

aqueous solution, followed by washing with water and drying with anhydrous

sodium sulfate overnight, finally distillated under vacuum. Dimethylaminomethyl

methacrylate (DMAEMA) (analytical reagent, Shanghai Chemical Reagent Co. Ltd)

was distillated under vacuum. Copper bromide (98%; Aldrich) was stirred with

acetic acid for 12 h, washed with ethanol and diethyl ether, and then dried in

vacuum. 2, 20-Bipyridine (bpy) (analytical reagent, Shanghai Chemical Reagent Co.

Ltd) was used as received without further purification. N, N, N0, N00, N00-
pentamethyldiethylenetriamine (PMDETA) (98%; Jiangsu Liyang Jiangdian Chem-

ical Factory, Liyang, China) was dried with 4-Å molecular sieve and distilled in

vacuum. N, N-dimethyl formamide (DMF) (analytical reagent, Shanghai Chemical

Reagent Co. Ltd) were distillated under vacuum in order to get reproducible results

for click reaction and ATRP every time. Other solvents were all analytical grade and

used as received without further purification.

Instrumentation

1H NMR spectra were recorded on an INOVA 400 MHz nuclear magnetic

resonance (NMR) instrument, using CDCl3 or dimethylsulfoxide-D6 (DMSO-d6) as
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the solvent and tetramethylsilane (TMS) as the internal standard at ambient

temperature. The fluorescence emission spectra of the polymers were obtained on an

Ediburger FLS920 fluorescence spectrophotometer at room temperature. Ultraviolet

visible (UV–vis) absorption spectra of the polymers in THF solutions were

performed on a Shimadzu (Kyoto, Japan) UV-240 recording spectrophotometer

at ambient temperature. FT-IR spectra were recorded on a Perkin-Elmer 2000

FT-IR spectrometer. The elemental analyses for C, H, and N were tested by a

LECO-CHNS microanalyzer. Transmission electron microscopy (TEM) was

recorded on a Tecnai G2-20 TEM at a 200 kV accelerating voltage. The samples

were prepared by mounting a drop of the micelle solution (0.05 mL) on a copper

EM grid covered with a thin film of formvar. The molecular weights and molecular

weight distributions of the polymers were determined with a Waters 1515 gel

permeation chromatography (GPC) equipped with refractive index detector, using

HR1, HR3, and HR4 column with molecular weight range 100–500000 calibrated

with PS standard samples. THF was used as the eluent at a flow rate of

1.0 mL min-1 operated at 30 �C. The conversion of the monomers was determined

gravimetrically.

Synthesis of 2, 4, 6-tris (3-ethynylphenyl)-1, 3, 5-triazine-2, 4, 6-triamine

(TPTTA)

3-aminophenylacetylene (2.34 g, 20 mmol) was added dropwise to a solution of

cyanuric chloride (3.68 g, 20 mmol) in toluene (100 mL) in a round-bottom flask

over 20 min. The solution was stirred for 1 h under 0–5 �C. Then the mixture was

heated to 40 �C, and 3-aminophenylacetylene (5.85 g, 50 mmol) was again added

dropwise to the mixture within 5 min. Then the reaction mixture was stirred at

110 �C overnight. The mixture was directly filtered, and the solvent was removed

by rotary evaporation under vacuum. The obtained crude product was purified by a

silica gel column with the mixture of petroleum ether and ethyl acetate (3/1, v/v).

The product was obtained as white solid (5.52 g, yield: 64%). The relevant

analytical data are as follows: Elemental Analysis: Calculated (%): C 76.04, H 4.25,

N 19.71; Found(%): C 76.09, H 4.14, N 19.45. 1H NMR (DMSO-d6), d): 9.41

(s, 3H), 7.11-7.92 (m, 12H), 4.19 (s, 3H) (Scheme 1).

Synthesis of polymers captured with halogen atoms and azide groups

The polystyrene-Cl (PS-Cl) was prepared by ATRP method using 9-chloromethyl-

anthracene or 1-phenylethylchloride as the initiator, and CuCl/bpy or

CuCl/PMDETA as the catalyst system, respectively. Poly(2-(dimethylamino)ethyl

methacrylate)-Br (PDMAEMA-Br) was prepared using ethyl-2-bromoisobutyrate as

the initiator and CuBr/PMDETA as the catalyst system [43]. A typical ATRP

procedure initiated by 9-chloromethylanthracene was carried out as follows: St

(1 mL, 8.71 mmol) and 9-chloromethylanthracene (19.75 mg, 0.0871 mmol) was

added to a dry ampoule filled with copper chloride (17.33 mg, 0.1742 mmol), bpy

(81.4 mg, 0.522 mmol) and solvent tetrahydrofuran (THF) or toluene (1 mL)

(Table 1 (entries 1–2)).The contents were purged with argon for approximately
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10 min to eliminate oxygen. Then, the ampoule was flame sealed and placed in an

oil bath at a desired temperature. After certain reaction time (Table 1), each ampoule

was quenched in ice water, and then opened. The contents was diluted with about

2 mL of THF, and then precipitated into about 250 mL of petroleum ether twice.

The polymer was collected by filtration and dried under vacuum for 24 h at

room temperature. The end-functionalized polystyrene-N3 (PS-N3), and

poly(2-(dimethylamino)ethyl methacrylate)-N3 (PDMAEMA-N3) were prepared

by the nucleophilic substitution reaction between previously obtained PS-Cl or

PDMAEMA-Br and sodium azide. The following procedure of preparing azido-

terminated polystyrene (PS-N3) was typical: the obtained linear polymer PS-Cl

(2 g, 0.465 mmol) was dissolved in N, N-dimethylformamide (DMF) (15 mL), water

Toluene

TPTTA

N

NN

Cl Cl

Cl

NH2

NN

NHN NH

NH

Scheme 1 The synthetic routes of 2, 4, 6-tris(3-ethynylphenyl)-1,3,5-triazine-2,4,6-triamine (TPTTA)

Table 1 Results of the solution ATRPs of St and DMAEMA

Entry [monomer]0/[initiator]0/

[CuX]0/[ligand]0

Mn(GPC)/Conversion

(%)/Time(h)

Mn(th)

(g/mol)

Mn(NMR)

(g/mol)

Mw/Mn

1 100:1:2:6a 4000/32/12 3400 3600 1.49

2 100:1:2:6b 9200/85/21 8900 8800 1.29

3 100:1:2:6b 4500/41/12 4300 4300 1.20

4 100:1:2:6c 3200/30/12 3100 3200 1.22

5 50:1:2:6d 2300/28/4 2200 2200 1.10

a Monomer: styrene; initiator: 9-chloromethylanthracene; catalyst: CuCl; ligand: bpy; solvent: toluene;

T = 110 �C
b Monomer: styrene; initiator: 9-chloromethylanthracene; catalyst: CuCl; ligand: bpy; solvent: THF;

T = 110 �C
c Monomer: styrene; initiator: 1-phenylethylchloride; catalyst: CuCl; ligand: PMDETA; solvent: THF;

T = 110 �C
d Monomer: DMAEMA; initiator: EBIB; catalyst: CuBr; ligand: PMDETA; solvent: THF; T = 60 �C
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(2 mL), NaN3 (1.51 g, 23.25 mmoL) and NH4Cl (24.8 mg, 0.465 mmoL) was added

as phase transfer catalyst (PTC) [44], and then, the mixture was allowed to stir at

60 �C overnight. Then the mixture was precipitated into methanol/water mixture

(v/v = 1/1) and washed with deionized water three times. The x-azide end-

functionalized polymers (PS-N3) were thus obtained. The PDMAEMA-N3 was also

prepared by the similar procedures as described above.

Synthesis of three-armed polymer (PS3) and amphiphilic miktoarm AB2 star

polymer (PS(PDMAEMA)2) by click coupling reactions

Three-armed polystyrene (PS3) were prepared by click coupling reaction between

the linear polymer (PS-N3, prepared using 9-chloromethylanthracene as the

initiator) and coupling agents (TPTTA), catalyzed by CuCl/PMDETA complex.

A typical reaction conditions with the ratio of reagents [PS-N3]0/[TPTTA]0/[CuCl]0/

[PMDETA]0 = 3:1:3:3 are briefly described. PS-N3 (1 g, 0.232 mmoL), TPTTA

(3.31 9 10-3 g, 7.75 9 10-2 mmoL), CuCl (2.31 9 10-3 g, 0.232 mmoL) and

PMDETA (4.01 9 10-2 g, 0.232 mmoL) were added to a dry ampoule filled with

5 mL of DMF solvent which was degassed by three freeze-pump-thaw cycles, then

the reaction mixture was purged with argon for approximately 10 min to eliminate

the oxygen. Then, the ampoule was flame sealed and placed in an oil bath at

designed temperature (110 �C) for 24 h. The polymer solution was allowed to pass

through an Al2O3 column to remove the copper salt, and precipitated in about

250 mL methanol. Then the polymer was filtered and dried at 50 �C in a vacuum

oven for 24 h. When click coupling reaction between linear polymer (PS-N3,

prepared using 1-phenylethylchloride as the initiator) and TPTTA was conducted,

the reaction temperature was controlled at 70 �C.

The procedures of synthesizing the amphiphilic miktoarm AB2 star polymer

PS(PDMAEMA)2 were as follows: PS-N3 prepared using 9-chloromethylanthra-

cene as the initiator (1 g, 0.112 mmoL), PDMAEMA-N3 1.24 g, 0.561 mmoL),

TPTTA (4.79 9 10-2 g, 0.112 mmoL), CuCl (3.34 9 10-2 g, 0.336 mmoL) and

PMDETA (5.81 9 10-2 g, 0.336 mmoL) were added to a dry ampoule filled with

5 mL of DMF which was degassed by three freeze-pump-thaw cycles, then the

reaction mixture was purged with argon for approximately 10 min to eliminate

oxygen. Then the ampoule was flame-sealed and placed in an oil bath held by a

thermostat at 70 �C for 24 h. The polymer solution was allowed to pass through

an Al2O3 column to remove the copper salt, precipitated in methanol and water

(v/v = 1/1) to remove linear PDMAEMA or star (PDMAEMA)3 due to the

solubility of those polymers in both solvents. The product was dried in a vacuum

oven at 50 �C.

Preparation of the micelle solutions

The amphiphilic miktoarm AB2 star copolymer, PS(PDMAEMA)2 (5 mg), was

dissolved in 1 mL of dry THF at room temperature to obtain a 5 mg/mL polymer

solution. Then the polymer solution was added into 5 mL of deionized water at a

rate of one drop every 10 s by a microsyringe under vigorous stirring.
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Results and discussions

Synthesis of PS-N3 and PDMAEMA-N3

The well-defined linear PS-Cl were prepared via solution ATRP of St initiated by

9-chloromethylanthracene in the presence of CuCl/bpy ([monomer]0/[initiator]0/

[CuCl]0/[bpy]0 = 100:1:2:6). The results were presented in Table 1 (entries 1–3). As

seen in Table 1, the type of the solvent had significant effect on the polymerization.

The molecular weight distributions of the obtained polymers in THF were narrower

than those in toluene. Meanwhile, the Mn(GPC)s were very close to the theoretical

values (Mn(th)s) (Mn(th) = ([M]0/[I]0) 9 MM 9 Conversion ? MI, where [M]0 and

[I]0 are initial concentrations of monomer and initiator, respectively, and MM and MI

are the molecular weight of St and the initiator, respectively.), which indicated the

relatively high apparent initiation efficiencies f (defined as Mn(th)/Mn(GPC)). In addition,

the well-defined PS-Cl can be also prepared using 1-phenylethylchloride as the

initiator and CuCl/PMDETA as the catalyst system. Meanwhile, the well-defined

PDMEMA-Br was also successfully prepared via ATRP using EBIB as the initiator

and CuBr/PMDETA as the catalyst as shown in Table 1 (entry 5).

The well-defined x-azide-ends of polymers (PS-N3) were successfully prepared by

the reaction between previously obtained PS-Cl (prepared using 9-chloromethyl-

anthracene as the initiator) and sodium azide. The structure of azide end-capped

polystyrene (PS-N3) was investigated by 1H NMR spectra as shown in Fig. 1. From

10 9 8 7 6 5 4 3 2 1 0 �1

8.6 8.4 8.2 8.0 7.8 7.6 7.4
ppm

4.7 4.6 4.5 4.4 4.3 4.2 4.1
ppm

c
H2
C

H 2
C

H
C

H2
C

H
C Cl

n�1

ppm

a

a

c

5.0 4.9 4.8 4.7 4.6 4.5 4.4 4.3 4.2 4.1 4.0 3.9 3.8
ppm

H2
C

H2
C

H
C

H2
C

H
C N3n�1

b

b

Fig. 1 1H NMR spectra of the polymers (PS-Cl and PS-N3). PS-Cl: Mn(GPC) = 4500 g/mol,
Mw/Mn = 1.20; PS-N3: Mn(NMR) = 4500 g/mol, Mw/Mn = 1.19
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Fig. 1, we can see that the characteristic signals at 7.50–8.50 ppm were attributed to

the anthryl protons (c) from PS chains. Meanwhile, the signal at 4.40 ppm, assigned

to methyne proton next to the terminal chloro of PS, disappeared, and a new peak at

3.95 ppm, attributed to methyne proton next to the terminal azide of PS (PS-N3)

appeared. Furthermore, the characteristic signal at 2100 cm-1 of azide group was

observed from FT-IR spectroscopy in Fig. 5a. The results above showed that the

chloro end-capped polystyrene (PS-Cl) was quantitatively converted to azide end-

capped polystyrene (PS-N3). These results indicated that the functional anthryl and

azide groups were both attached to the polymer chain ends and the substitution was

complete. Meanwhile, the appearance of the characteristic signal of the azide group

at about 2100 cm-1 (Fig. 5b) also confirmed the successful preparation of

PDMEMA-N3.

Preparation of the three-armed polystyrene (PS3)

The three-armed polystyrene was obtained by the coupling-onto method using

a click-chemistry strategy (Scheme 2), which were carried out with equi-

molar amounts of the reactants ([azide group]/[trisyne group] = 3/1) in DMF with

CuCl/PMDETA as the catalyst system for about 24 h. The gel permeation

chromatography (GPC) was used to trace the process of the reaction (Fig. 2). The

GPC curves showed a decrease in retention time with the increasing reaction time

(24 h). However, on the GPC curves multiple peaks emerged when the click

reaction was carried out at a relatively high temperature (110 �C). For the star

polymer, the Mn(GPC) are always much smaller than those for theory due to relative

smaller hydrodynamic size than linear counterparts with the same molecular weight.

However, from the GPC results, the molecular weight of the peak in the GPC trace

centered at around 15.5 min have increased to around 600000 g/mol, although this

molecular weight goes beyond the range of measure. And the molecular weight of

the peak in the GPC trace centered at around 17.5 min was about 38,000 g/mol. It

was very difficult to find the according peak of the three-armed polystyrene. These

may be due to a side-reaction between anthracene-anthracene (or other) end-group

side reactions [45]. To confirm the existence of the side-reaction in the click system

above, we used the PS-N3 prepared via ATRP using 1-phenylethylchloride as the

initiator to carry out the similar click reaction with TPTTA at two different

temperatures. The results were shown in Fig. 3. From GPC traces, it was clearly

observed that monodispersive polymers were obtained at a high temperature

(110 �C). However, there was an apparent tail in GPC traces, which indicated the

obtained polymer maybe contain the star polymer (PS3) and/or linear polymer (PS2).

At a relatively low temperature (70 �C), the tail in GPC traces became

inconspicuous, which implied a relatively high efficiency of the click reaction

at 70 �C. However, when the click reaction between PS-N3 (prepared using

9-chloromethylanthracene as initiator) and TPTTA was carried out at 70 �C, it was

hard to obtain PS3 star polymer (Fig. 4).
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Synthesis of the amphiphilic miktoarm AB2 star polymer PS(PDMAEMA)2

We also synthesized the amphiphilic miktoarm AB2 star polymer PS(PDMAEMA)2

using the click reaction between TPTTA with PS-N3 (prepared from PS-Cl

synthesized via ATRP using 9-chloromethylanthracene as initiator) and PDMA-

EMA-N3 ([PS-N3]0:[PDMAEMA-N3]0:[TPTTA]0 = 1:5:1; PS-N3: Mn(GPC) =

9200 g/mol, PDMAEMA-N3:Mn(GPC) = 2300 g/mol) as shown in Scheme 2. The

reaction catalyzed by the CuCl/PMDETA system was carried out at 70 �C for 24 h

and the polymer solution was allowed to pass through an Al2O3 column to remove

the copper salt, precipitated in methanol and water (v/v = 1/1) to remove linear

PDMAEMA or star (PDMAEMA)3 due to the solubility of those polymers in both

solvents. The obtained amphiphilic miktoarm AB2 star polymer PS(PDMAEMA)2

was confirmed by FT-IR, 1HNMR, GPC, ultraviolet absorption and fluorescence

N

N

N

NH

NHHN

P2

N

N

N

NH

NHHN

N
N

N

N
N

N P2N

N N

P1

H2
C

H2
C

H
C N3

[ ]
n

H3C
H2
C O

O CH3

CH3

H2
C[

CH3

N3

O
O

CH2

CH2

N

H3C CH3

] m

P1 = PS

P2 = PDMAEMA

( or P1 )

( or P1 )

Scheme 2 The synthetic route of star polymers of PS3 and PS(PDMAEMA)2

Polym. Bull. (2009) 63:467–483 475

123



spectra as shown in Figs. 5, 6, 7, 8, 9. The characteristic absorption peaks of the

terminal azide group at 2093 cm-1 were observed in the FT-IR spectra of the

polymers (PS-N3) and (PDMAEMA-N3) completely disappeared in the obtained

amphiphilic miktoarm AB2 star polymer PS(PDMAEMA)2. Furthermore, the FT-IR

results further confirmed the existence of PS chain (the characteristic absorption

peak at *697, 1452 and 1492 cm-1) and PDMAEMA chain (the absorption peak at

1729 cm-1 ascribed to the vibration of C=O in DMAEMA unit).

The obtained amphiphilic miktoarm AB2 star polymer PS(PDMAEMA)2 were

also analyzed by 1H NMR spectroscopy as presented in Fig. 6. In Fig. 6, the

14 16 18 20 22 24 26

Click reaction
mixture

PS-Cl
M

n
= 4500

M
w

/M
n
= 1.20

Elution minutes

Fig. 2 GPC curves of PS-Cl prepared via ATRP using 9-chloromethylanthracene as the initiator and the
click-reaction mixture of PS-N3 and TPTTA at 110 �C for 24 h

16 18 20 22 24 26 28

Click reaction
 mixture at 70 oC
M

n
= 9200

M
w
/M

n
= 1.30

Click  reaction
 mixture at 110 oC
M

n
= 8900

M
w
/M

n
= 2.24

PS-Cl
M

n
= 3200

M
w
/M

n
= 1.22

Elution minutes 

Fig. 3 GPC curves of PS-Cl prepared via ATRP using 1-phenylethylchloride as the initiator and the
click-reaction mixture of PS-N3 and TPTTA at different temperatures
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characteristic signals at around 7.50–8.32 ppm (d in Fig. 6) are assigned to the

anthracene ring protons from PS chain. Furthermore, the relative composition of the

PS to PDMAEMA segments in the amphiphilic miktoarm AB2 star polymer

(PS(PDMAEMA)2) was close to the ratio of 1/2, which was derived from 1H NMR

spectra, that is, the integration of the aromatic proton in St units (c in Fig. 6,

d = 6.25–7.24 ppm) to the methylene proton close to oxygen of DMAEMA unit

16 17 18 19 20 21 22 23 24 25 26 27

Click reaction
mixture

M
n
= 10400

M
w
/M

n
= 1.39

 PS-Cl
M

n
= 4500

M
w
/M

n
= 1.20

Elution minutes

Fig. 4 GPC curves of PS-Cl prepared via ATRP using 9-chloromethylanthracene as initiator and the
click-reaction mixture of PS-N3 and TPTTA at 70 �C

4500 4000 3500 3000 2500 2000 1500 1000 500

PS(PDMAEMA)2

PDMAEMA-N3

PS-N3

2093 cm-1 1729cm-1

wavenumbers (cm-1) 

A:

B:

C:

Fig. 5 FT-IR spectra of the linear polymers (PS-N3 and PDMAEMA-N3) and the amphiphilic miktoarm
AB2 star polymer PS(PDMAEMA)2. PS-N3: Mn(GPC) = 9200 g/mol, Mw/Mn = 1.29; PDMAEMA-N3:
Mn(GPC) = 2300 g/mol, Mw/Mn = 1.10; (PS(PDMAEMA)2: Mn(GPC) = 12900 g/mol, Mw/Mn = 1.31

Polym. Bull. (2009) 63:467–483 477

123



(a in Fig. 6, d = 4.00–4.10 ppm). Furthermore, the molecular weight of PS(PDMA-

EMA)2 can be calculated from Fig. 6 (Mn(NMR) = 13300 g/mol, by Eq. 1), which

was close to the value measured by GPC (Mn(GPC) = 12900 g/mol). These results

above indicated that the amphiphilic miktoarm AB2 star polymer PS(PDMAEMA)2

were successfully prepared via the one-pot click reaction.

Mn NMRð Þ ¼ I4:00�4:10=2ð Þ= I6:25�7:24=5ð Þ � Mn NMRð Þ;PS=MWst

� �
�MWDMAEMA

�

þMn NMRð Þ;PS ð1Þ

I4.00–4.10: the integral of the signals at 4.00–4.10 ppm;

I6.25–7.24: the integral of the signals at 6.25–7.24 ppm;

Mn(NMR), PS: the NMR number-average molecular weight of PS;

MWSt: molecular weight of St;

MWDMAEMA: molecular weight of DMAEMA.

GPC curves of the original PS-Cl (prepared using 9-chloromethylanthracene

as initiator), PDMAEMA-Br and the click-reaction product PS(PDMAEMA)2

are shown in Fig. 7. The GPC trace of the amphiphilic miktoarm AB2 star

polymer PS(PDMAEMA)2 displayed a narrow molecular weight distribution

(Mw/Mn = 1.31) and a clear shift toward higher elution time. Moreover, the GPC

molecular weight was close to the calculated value from 1H NMR. All the results

indicated that the well-controlled amphiphilic miktoarm AB2 star polymer

PS(PDMAEMA)2 was successfully obtained by the click reaction.
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Due to the high sensitivity of the anthracene groups to the UV light, the UV

absorption of the PS-Cl, the amphiphilic miktoarm AB2 star polymer PS(PDMAEMA)2

and the blank sample PDMAEMA in THF were measured as shown in Fig. 8. From

Fig. 8, it can be found that both PS-Cl and the amphiphilic miktoarm AB2 star

polymer PS(PDMAEMA)2 showed strong absorptions at around 352, 372 and

392 nm, which were corresponding to the absorptions of the anthracene moieties in

the polymer chains. Furthermore, the strong fluorescence emissions of anthracene

moieties in the solution also can be observed. The fluorescence emissions of PS-Cl

and the amphiphilic miktoarm AB2 star polymer PS(PDMAEMA)2 and the blank
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Fig. 7 Typical GPC traces of linear polymers (PS-Cl and PDMAEMA-Br) and the click-reaction
production (PS(PDMAEMA)2)
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5.0 9 10-5 M with THF as a solvent
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sample PDMAEMA in THF are shown in Fig. 9. It can be observed that PS-Cl and

PS(PDMAEMA)2 exhibited strong fluorescence in a wide range of wavelengths in

THF at room temperature (kex = 380 nm). The maximum emission wavelength was

at around 414 nm, which was consistent with the results reported [46]. Therefore,

the obtained amphiphilic miktoarm AB2 star copolymers were additionally endowed

with fluorescent group, which would extend the potential application field of

obtained copolymers, such as fluorescence-labeled micelles [47].

Micellization of the obtained amphiphilic miktoarm star polymer

PS(PDMAEMA)2

Water-soluble PDMAEMA and its copolymers have generated considerable interest

in recent years due to their special temperature/pH-responsive properties, which is

especially suitable for gene delivery materials [48–51]. In this part, we described the

formation of aggregates of the obtained amphiphilic miktoarm star polymer

PS(PDMAEMA)2. Typical TEM images of the aggregates are shown in Fig. 10.

From Fig. 10, we can find that the spherical micelles composed of a hydrophobic

core (PS) and a hydrophilic shell (PDMAEMA) were successfully prepared. The

image showed that all the particles are almost spherical and the mean diameter is

about 200.0 nm.

Conclusions

The well-defined amphiphilic miktoarm star copolymer PS(PDMAEMA)2 was

successfully prepared by the arm-first technique via click reaction between a novel

trifunctional core (TPTTA) with the linear polymeric chains PS-N3 and
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Fig. 9 Fluorescence spectra of the linear polymers (PS-Cl and PDMAEMA-Br) and the amphiphilic
miktoarm AB2 star polymer PS(PDMAEMA)2. Concentration of all the polymers are 5.0 9 10-5 M with
THF as a solvent. (kex = 380 nm)
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PDMAEMA-N3. The obtained amphiphilic miktoarm star copolymer PS(PDMA-

EMA)2 showed typical optical properties of the anthracene moieties, such as

fluorescence and UV absorption. Furthermore, the spherical micelles were also

successfully prepared via self-assembly technique.
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